SCHMELZMETALL

Werkstoffdatenblatt

HOVADUR® CB2

Ausgabe Nr. 03DE Seite 1/2 2018-05-28

Werkstoff- Bezeichnung SCHMELZMETALL: **HOVADUR® CB2**

Werkstoff- Bezeichnung, EN-Normen: CuBe2 Werkstoff- Nummer, EN-Normen: CW101C Werkstoff- Nummer, frühere DIN-Normen: 2.1247

Werkstoff- Nummer, UNS System (ASTM): ähnlich C17200 Class 4

Klassifizierung RWMA (U.S.A.):

Normenhinweise

EN Der Werkstoff ist genormt EN12163 (Rundstangen), EN1267, (Flachstangen, Profile),

EN12420 (Schmiedeprodukte)

DIN (frühere) (DIN17666/DIN17672)

(B196 / B570) **ASTM**

Werkstoffbeschreibung

HOVADUR® CB2 ist eine thermisch aushärtbare Kupferlegierung. Der Werkstoff weist im ausgehärteten Zustand eine ausserordentlich hohe Härte und Festigkeit in Verbindung mit ansprechenden Werten der elektrischen und thermischen Leitfähigkeit auf. Gute Korrosionsbeständigkeit (gegen Meerwasser: ausgezeichnet), hohe Verschleissbeständigkeit mit hohem Widerstand gegen Fressen, gute Poliereigenschaften und Funkenfreiheit runden die herausragenden Eigenschaften dieser Legierung ab.

Sicherheitsdatenblatt: SCHMELZMETALL Nr. 07.02D (Ausgabe 30.07.2002)

Werkstoffeigenschaften

Chem. Zusammensetzung in Gewichts- % (garantierte Bereiche)

Be	Co	Ni	Co + Ni	Fe	Si	sonstige total	Cu	
1,8-2,0	0-0,3	0-0,3	0,2-0,5	max. 0,1	max. 0,1	max. 0,5	Rest	

Zugesagte Eigenschaften bei 20°C [Zustand: ausgehärtet, resp. lösungsgeglüht]

Zustand		ausgehärtet	lösungsgeglüht
Brinell-Härte HB		min. 350 *)	max. 125 *)
Elektrische Leitfähigkeit	MS/m	min. 16	max. 12
Elektrische Leitfähigkeit	% IACS	min. 27,6	max. 20,7

^{*)} Bei unterschiedlichen Auffassungen gilt als Härtewert der Durchschnitt von 3 zufällig gelegten Härtemessungen.

Zugeordnete Eigenschaften bei 20°C [Zustand: ausgehärtet, resp. lösungsgeglüht]

Zustand			ausgehärtet	lösungsgelüht
Zugfestigkeit	1)	N/mm² (MPa)	min. 1150	max. 600
0,2% -Dehngrenze	1)	N/mm² (MPa)	min. 1000	max. 350
Bruchdehnung (A5)	1)	%	min.3	min. 35

1) Die Festigkeitswerte werden nur auf Kundenbestellung nachgewiesen

Material-Informationen (Richtwerte)

E-Modul	N/mm² (MPa)	135 000	
Erweichungstemperatur	°C	300	
Spezifisches Gewicht	g/cm³	8,3	
Wärmeleitfähigkeit	W/mK	160	(Mittelwert 20°C – 300 °C)
Ausdehnungskoeffizient	x 10-6 / °K	17,0	(Mittelwert 20°C – 300 °C)
Schmelzintervall	°C / /	870 - 970	\sim 7

Angaben über die Beschaffenheit oder Verwendbarkeit von Werkstoffen dienen der Beschreibung. Zusagen in Bezug auf bestimmte Eigenschaften oder Verwendungszwecke bedürfen der schriftlichen Vereinbarung.

Werkstoffdatenblatt

HOVADUR® CB2

Ausgabe Nr. 03DE 2018-05-28 Seite 2 / 2

Verarbeitungshinweise

Warmverformung:

HOVADUR® CB2 lässt sich bei etwa 800-650°C gut warm umformen. Nach der Umformung wird eine rasche Abkühlung in Wasser empfohlen.

Hinweis: Nach einer externen Warmumformung werden die Eigenschaften von HOVADUR® CB2 in der Regel nicht mehr erreicht.

Kaltumformung:

HOVADUR® CB2 ist im ausgehärteten Zustand nicht für eine Kaltumformung vorgesehen. Muss eine Kaltverformung durchgeführt werden, muss HOVADUR® CB2 im lösungsgeglühten Zustand eingesetzt werden. Nach der Verformung muss das Teil in der Regel thermisch ausgehärtet werden.

Wärmebehandlung:

Eine Wärmebehandlung verändert die zugesagten Eigenschaften. Bei einer Wärmebehandlung nach Auslieferung gibt es keine Zusage für die Erreichung der Eigenschaften.

Hinweise zu Wärmebehandlungen (diese sind immer stark von der Art und Funktion des Ofens abhängig):

Lösungsglühung: 760-800°C, ca. 30 Minuten mit Abschreckung in Wasser

Aushärtung: 310-340 °C, 2 – 5h mit Abkühlung an der Luft

Spanende Bearbeitung:

HOVADUR® CB2 lässt sich zerspanend bearbeiten. Zu empfehlen sind Hartmetall- Schneidwerkzeuge mit positiver Schneidengeometrie.

Beim Bohren ist auf eine gute Späneabfuhr zu achten. Eine Kühlung mittels Emulsion ist vorteilhaft. Bei Trockenbearbeitung muss dies unter starker Absaugung durchgeführt werden, die Abluft muss mit dem Einsatz eines Partikelfilters gereinigt werden.

Bei grossen Zerspanungsvolumen empfiehlt sich eine Vorbearbeitung im lösungs-geglühten Zustand.

Bei größeren Innengewinden ist die Herstellung durch Zirkularfräsen zu empfehlen.

Verbindungsarbeiten:

HOVADUR[®] CB2 lässt sich sowohl weich wie auch hartlöten, wobei aber beim Hartlöten (auch bei begrenzter Einwirkdauer der Temperatur) ein Härteverlust in der Erwärmungszone zu erwarten ist. Es sind möglichst niedrig schmelzende Silberlote zu verwenden und der Lötvorgang muss möglichst kurzgehalten werden. Schweißen von HOVADUR[®] CB2 ist möglich; auf eine ausreichende Schweißrauch- Absaugung und - Filterung ist zu achten.

Anwendungsbeispiele

Mechanisch hoch belastete Backen, Halter, - und Leisten für Abbrandstumpf- und Buckelschweissung. Funkenfreie und amagnetische Sicherheitsteile für die On- / Offshore

Bohrtechnik. Bauteile für Präzisionsmessgeräte.

Hochfeste und korrosionsbeständige Bauteile für Anwendungen in der Meerestechnik.

Angaben über die Beschaffenheit oder Verwendbarkeit von Werkstoffen dienen der Beschreibung. Zusagen in Bezug auf bestimmte Eigenschaften oder Verwendungszwecke bedürfen der schriftlichen Vereinbarung.